Package delivery system

by: Stevens, John K;

A package storage and delivery system includes electronically controlled lockers disposed at or near customer locations. Each locker is unlocked by a courier, preferably by means of a short-range transceiver or transmitter carried on the courier's person. The customer can unlock the locker and receive the delivered package. Cryptographically signed communications are employed along with nonvolatile usage logs to minimize the risk of loss of a package or fraud by courier or customer. The lockers may be stackable, permitting a delivery courier to add lockers in the event a customer receives too many deliveries to fit into a single locker. Each box has, of course, a physical location, and has associated with it an address code indicative of the physical location, for example by means of a human-readable or compressed representation of the precise latitude and longitude. A package delivered to such a box preferably bears the address code. A merchant can greatly reduce the risk of credit card fraud by requiring the use of such codes for the simple reason that a fraudulent transaction may be traced to a specific physical location.

SUMMARY OF INVENTION

A package storage and delivery system includes electronically controlled lockers disposed at or near customer locations. Each locker is unlocked by a courier, preferably by means of a short-range transceiver or transmitter carried on the courier's person. The customer can unlock the locker and receive the delivered package. Cryptographically signed communications are employed along with nonvolatile usage logs to minimize the risk of loss of a package or fraud by courier or customer. The lockers may be stackable, permitting a delivery courier to add lockers in the event a customer receives too many deliveries to fit into a single locker. Each box has, of course, a physical location, and has associated with it an address code indicative of the physical location, for example by means of a human-readable or compressed representation of the precise latitude and longitude. A package delivered to such a box preferably bears the address code. A merchant can greatly reduce the risk of credit card fraud by requiring the use of such codes for the simple reason that a fraudulent transaction may be traced to a specific physical location.

BRIEF DESCRIPTION OF DRAWINGS

The invention will be described with respect to a drawing in several figures, of which:

FIG. 1 is a plan view showing a locker according to the invention and a home;

FIG. 2 shows a package addressed according to the invention; and

FIG. 3 shows a delivery box according to the invention.

Where possible, like reference designations have been used among the figures to show like elements.

DETAILED DESCRIPTION

Delivery of packages may be performed with respect to package lockers that are located according to a coordinate system. FIG. 1 shows a typical locker 34 attached to a home 35. The home has a location relative to lines of latitude 32, 33 and lines of longitude 30, 31 which define a grid. Lines 36, 37 define the position of the locker within the grid.

In the usual case, the location of the locker 34 is determined at the time of installation, for example using a GPS (global positioning system) receiver. The GPS receiver provides the latitude and longitude, expressed in a suitable notation such as degrees, minutes and seconds or degrees and decimal fractions of a degree. When SA (selective availability) is off, the receiver will provide a spatial resolution of typically ten or twenty feet. If SA is on, it is desirable to use DGPS (differential GPS) to provide a position of comparable accuracy.

A traditional numerical representation of a location by latitude and longitude is rather wasteful of characters. The only characters used are digits, and many of the digits are not used. Unused digits happen because, for example, the number of minutes in a degree is never more than sixty, so the first digit of a "minutes" value is never 7 or 8 or 9. Unused digits also happen because some combinations of digits correspond to geographic locations (e.g. in the Arctic or the middle of the ocean) that are unlikely to be referred to as a package delivery location is a straightforward matter to devise functions which permit expressing geographic locations with far fewer characters than decimally expressed latitudes and longitudes. Letters can be used along with all ten digits to provide locations expressed in perhaps six or eight characters depending on the desired resolution. Some economy of effort can be accomplished by selecting a reference point such as the airport which might be used to deliver a courier package for an address. Once the airport reference point is selected, it is a straightforward matter to define latitude and longitude relative to that point rather than relative to the usual global origin.

It is thus helpful to consider expressing a locker location by means of an airport code followed by some letters and numbers which communicate the precise position of the locker relative to the reference point of the airport code. Such an expression can be extremely helpful to a courier delivery service. It tells which airport to send the package to, as well as the position relative to that airport.

FIG. 2 shows a package addressed according to the invention. A Zip code 47 may appear on the package but is fundamentally unrelated to the position code just described. The position code may consist of an airport code 45 as well as a character string 46 which conveys the location relative to the airport. Importantly, when a locker is installed, the installer will take a GPS reading, and with appropriate software will convert the latitude and longitude information into the character string 46.









When a would-be customer places an order for delivery of goods, the customer provides the entire "ebox" code 45, 46 to the merchant. The merchant uses the code 45, 46 to address the package.

The courier company will necessarily perform sorts on packages and will also need to load trucks efficiently. A traditional truck-loading approach is to group the packages by Zip code value. This has the advantage of being simple to do, and has the disadvantage that it may pass up opportunities for trucks to be packed optimally. Two destinations might be very near each other and yet have quite different Zip codes, for example. Sorting packages by Zip code in numerical order will not necessarily place packages near to each other that represent delivery locations that are near to each other.

The position code 45, 46 offers benefits for the trucking and delivery companies. When a truck is being packed, packages that are intended for locations that are suitably nearby to reach other can be easily identified by visual review of the position codes.

In accordance with the invention, what happens next is that a delivery carrier takes the package to the geographic location defined by the location code, and identifies a delivery box 60 (FIG. 3). This box 60 has a lid 61 which locks and unlocks under control of a microprocessor. The carrier transmits a wireless signal to the box that prompts the box to open, and lifts the lid 61 as shown in lifted position 63. The package may then be placed in the box 62. The lid is closed, and the customer is notified that there is a package in the box.

Later, the customer causes the box to unlock, preferably by a second wireless signal, and the lid is opened. The package is removed and the lid is closed. Preferably a log is kept of the openings and closings of the box, and the log may be stored in nonvolatile memory in the box for later study in the event of some question as to the delivery of a package.

Importantly, if a merchant ships a package using a position code of the type described here, it is likely that credit card fraud losses could be reduced substantially. If a shipment turns out to have been an order placed by a fraudulent party, the position code permits the authorities to go directly to the place where the package was delivered. This pinpoint locating ability will reduce fraud by making it easier to find the fraudulent party, but also serves as preventive measure since many would-be fraudulent parties will be deterred by the increased risk of being caught.

On a very practical level a merchant that uses position-coded addresses as described above will have a lower rate of credit card fraud, and credit card merchant banks will likely offer reduced credit card commissions or other incentives to attract the business of such a merchant should also be appreciated that a storage locker such as is described above can be an important part of a delivery system that includes delivery trucks dispatched to deliver during off-peak times. In many areas a suitable off-peak time will be late at night, for example between 10 PM and 7 AM. A typical delivery driver and truck operating during off-peak hours and using lockers such as are described above will be able to perform many more deliveries per hour than a driver and truck operating during peak times (such as during daylight hours) and without such lockers.

In an off-peak approach, the packages may be addressed with location codes as described above. Alternatively, the addresses may be traditional postal service addresses. In either case, some means is required for securely unlocking and locking the lockers. One approach is to receive an order from a customer and to establish a unique identifier in connection with the order. When the carrier reaches the locker, a message is communicated to the locker, preferably by wireless means such as radio or infrared. The locker tests for a predetermined relationship between the message and the identifier, and if the relationship is satisfied the locker unlocks and the lid can be opened. The package is placed in the locker and the lid is closed and locked. The user is then notified that there is a package in the locker.

Those skilled in the art will have no difficulty devising myriad obvious improvements and enhancements to the invention described, all of which are to be considered with the scope of the invention as defined by the claims which follow.

Clothes hanger

Door clip

Catalyst patterning for nanowire devices

Production of dihydroxydiphenyl alkanes

Water filtration assembly

Modular nuclear fuel assembly design

Mower deck bumper

Pharmaceutically active morpholinol

Security and deployment assembly

Automatic reversal mechanism

Power-generating control apparatus for vehicle

Weapon stabilization system

Method for preparing microemulsions

Support for a torch

Photographic film and film cassette

Decoupled integrated circuit package

Soybean cultivar 40064423

Process for concentrating fluids

Baby blanket

Heterocyclic-methylene-penems

Golf putt training apparatus

Catalyzed fluorination of chlorocarbons

High temperature diesel deposit tester

Device in clearing saws

Environmentally stable monolithic Mach-Zehnder device

Preparation of star polymers

Article transferring apparatus

Incontinence electrode apparatus

Cotton gin control

Tissue anchoring system and method

Probing with backside emission microscopy

Metering apparatus

Seal press

Oscillator circuit

Screw

Printer control system

Flash jet coolant circulation system

Plain bearing

Low-noise frequency synthesizer

Nitrogen detection

Automated nut-cracking apparatus and method

Multi-channel optical transmission system

Signal amplifier

Modular station platform construction kit

Liquid container

Froth flotation

Cervical traction device

Magnetic domain propagation register

Valve timing adjusting device

Perfusive chromatography

Towable "V" rake agricultural machine

Start-up circuit for voltage regulators

Flash memory device

Pulse width modulation operation circuit

Expandable tire building former

Wheelchair motorizing apparatus

Ribbed clothlike nonwoven fabric

Dual-wavelength x-ray monochromator

Naso-gastric tube retainer

Electrical coupling unit for electrosurgery

Manual floor sweeper

Gypsum-cement system for construction materials

Depth-resolved fluorescence instrument

Motor vehicle gearbox

Fuel system for multicylinder engines

Simultaneous production of higher chloromethanes

Thin layer ablation apparatus

Triarylpropyl-azabicyclooctanes

Cover connecting mechanism

Brake pressure control valve

Fast circuit switching system

Fuel dispensing nozzle

Facsimile compression for transmission

Lithography process

Simultaneous telecommunication between radio stations

Structurally efficient inflatable protective device

Digital character display

Snap fastening device

Powder dividing device for camera

Polishing apparatus

Drain-extended MOS ESD protection structure

Sod cutter

Automatic trimming machine

Developer powder supply cartridge

Electromechanical preparation of photoengraving cylinders

Layered film and packaging material

Shot gun shell tracer wad

Inter-LAN connection method using ISDN

Elongated flexible detonating device

Extrusion machine

4-Aminoaliphatic-2,3,5,6-[dibenzobicyclo[5.1.0]octanes] and salts thereof

Fluid flow reversing apparatus

Optical fiber strain relief device

Asymmetric wire rope isolator

Stabilized throttle control system

Process for decoking catalysts

Somatostatin receptors

Control means for ground hydrants

Reversible code compander

Master cylinder apparatus

Optical device, system and method

Electromechanical toy

Shutter time control circuit

Railcar straddle for material handling

Ice body delivery apparatus