Multi-vial blood collection system

by: Roland, Patricia D.;

A blood collection system is provided for collecting multiple samples of blood into evacuated vials from a single needle insertion site, and comprises a capillary tube system which acts as a regulator so that samples of blood can be collected at a controlled rate, thereby reducing the risk of vein collapse or other patient trauma. The capillary tube system includes a flexible catheter which mounts an intravenous cannula which can be positioned within a blood vessel from which is drawn the blood sample. A plurality of fittings are located along the length of the capillary tube system, and define openings for interfitting needles, which lie within a series of bores that extend axially from the blood collection system. Samples of blood are taken by inserting covered, evacuated vials into the bores of the blood collection system until a needle pierces the cover of a vial. A blood sample drawn from the patient will flow through the flexible catheter and into the capillary tube system and through the attached needles, and is collected into the multiple evacuated vials, while requiring only a single needle insertion into a patient.

BACKGROUND OF THE INVENTION

This invention relates to a new and improved blood collection system for collecting multiple samples of blood into evacuated tubes from a single needle insertion site.

Various blood collection systems having particular application in vacuum tube phlebotomy are known, and typical prior art devices are shown in U.S. Pat. Nos.: 4,066,067; 4,166,450; 4,312,362; 4,326,541; 4,327,746; 4,333,478; 4,409,990; 4,412,548; 4,418,703; 4,436,098; 4,790,330; and, 4,947,863. Some of these patents describe devices which allow for multiple samples of blood to be collected from a patient in a single procedure, and while these devices provide a means to fill several evacuated blood collection vials, they require removal of a filled vial from a holder before placement and filling of a succeeding evacuated vial can take place. This procedure not only requires frequent and time consuming monitoring of a given patient, but runs the risk of blood leakage particularly during changing of blood collection vials. Furthermore, none of the prior art devices provide a blood collection system where several vials can be filled simultaneously or in succession from a single needle insertion site, without requiring removal of filled vials during the multiple sampling procedure, and only a single needle insertion of the patient.

Also, none of the prior art devices provide a blood collection system where large amounts of blood can be removed from a patient at a controlled rate, while reducing the risk of vein collapse that can occur during rapid blood removal. Moreover, none of the prior art devices provide a blood collection system where the needle insertion site is separated from the blood collection vials in a manner that reduces the risk of prematurely dislodging the needle from the vein. Consequently a need exists for a simple, reliable and disposable blood collection system that can collect large amounts of blood from a single insertion site, while simultaneously distributing the collected blood into one or more evacuated tubes, without leaking blood, or causing patient discomfort or trauma.

Also, it would be helpful if the blood collection system could be easily separated from the filled tubes and subsequently disposed, while reducing the risk of an accidental needle stick, or blood leakage.

THE INVENTION

According to the invention, a blood collection system is provided for collecting multiple samples of blood into evacuated tubes from a single needle insertion site, without requiring removal of filled blood collection tubes during the multiple sampling procedure.

The multiple vial blood collection system comprises a capillary tube system which simultaneously distributes blood into at least one blood collection tube, while acting as a regulator so that samples of blood can be collected at a controlled rate, thereby reducing the risk of vein collapse that can occur during rapid blood removal. The blood sample enters a flexible catheter which mounts an attached cannula positioned within a blood vessel for the purpose of drawing a blood sample, and the blood sample flows through the catheter and cannula and into the capillary tube system.

A plurality of T-shaped fittings are provided along the bends of the capillary tube system, and define openings for a plurality of needles, which lie within a series of bores extending axially from the blood collection system. A blood sample is taken simply by inserting a covered, evacuated vial into a bore of the blood collection system until each needle pierces the cover of a vial. This enables the blood sample to flow from the patient and collected by the vial. Using the blood collection system of this invention, several blood samples can either be taken at separate intervals, in quick succession, or simultaneously.

The vials can be removed from the blood collection system simply by manually withdrawing the filled vials, and when the last blood sample has been taken, the cannula and attached catheter are withdrawn from the patient, and the entire capillary tube system is discarded.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an upper perspective, exploded view of the blood collection system of this invention;

FIG. 2 is an upper perspective view of the capillary tube section of this invention showing a plurality of evacuated vials in place immediately prior to obtaining a blood sample;

FIG. 3 is a perspective view of a needle penetrating the rubber diaphragm of a standard blood collection tube; and,

FIG.. 4 shows a placement of an intravenous cannula of the blood collection system in a patient.

DESCRIPTION OF THE PREFERRED EMBODIMENTS









The blood collection system 10, is shown in FIG. 1, 2 and 4, and comprises a flexible catheter 11, whose distal end 12 mounts an intravenous cannula 13 prepositioned within blood vessel site 14. A sinusoidal capillary tube system 15 (shown in dotted designation), containing capillary tube segments 16 is attached to the proximal end 17 of the flexible catheter 11, and functions to collect blood from the single insertion site 14, while simultaneously distributing the blood into one or more evacuated tubes (described, infra), with minimal blood leakage, and reduced patient discomfort or trauma. A typical capillary size may exceed about 1/32" in diameter. A plurality of T-shaped fittings 20-25 are provided along the bends 26-32 of the capillary tube system 15, and define openings 33-38 into which fit a series of needles 40-45 whose cutting edges extend axially from the blood collection system 10. The needles 40-45 are shown attached to a series of needle guards 51-56 by a friction fit, and the needle guards are provided with gripping ends 60-65 that extend axially from the tip of the needles.

As shown in FIGS. 1 and 2, the capillary system 15 is encased between sheets 70 and 71 of transparent plastic film which provide structural support for the capillary tubes and T-shaped fittings 20-25 to prevent or reduce blood leakage. The sheets 70 and 71 of plastic film are in turn secured between a pair of blood protection plates 72 and 73 which provide structural support for the entire blood collection system 10 as well as protection from accidental needle sticks.

FIGS. 1 and 2 show a plurality of curved flanges 74-85 extending axially from the blood protection plates 72 and 73, and the flanges define a series of bores 86 (FIG. 2) which surround the needles 40-45 when the blood protection plates are joined together. A pair of compressor bars 87 and 88 extend over the top of plate 72, and function to inhibit movement of the protection plates when the blood collection system is in use. Alignment holes 89 are defined along the surface of the blood protection plates 72 and 73 and provide a visual means for positioning the blood protection plates prior to application of the compressor bars 87 and 88.

As shown in FIG. 2, and 3, a blood sample is taken simply by inserting evacuated vials 90-95 horizontally into a bore 86 of the blood collection system 10 until the cutting edge of a needle pierces the cover 96-101 of an evacuated vial, thereby causing the blood sample to flow from the blood vessel site 14 through the flexible catheter 11 and into the capillary tube system 15 and collection by evacuated vials 90-95. This enables several blood samples to be taken at separate intervals, in quick succession, or simultaneously.

Regardless of the method of vial insertion, the blood flow is regulated by the length and diameter of the capillary tube segments 16, the pressure differential between the partial vacuum in the evacuated vials 90-95 and the patient's natural blood pressure, and the type of blood vessel site 14 in which the intravenous cannula 13 is placed.

By controlling the rate of blood removal, the risk of vein collapse that can occur during excessively rapid blood removal can be reduced. Also, a medical practitioner can estimate how long it will take for a given volume of blood to be collected from a patient, and distributed to the various evacuated vials. This information can reduce the frequent and time consuming task of monitoring a patient, and free the medical practitioner to collect multiple samples of blood from several patients simultaneously.

After the last blood sample has been taken, the intravenous cannula 13 is withdrawn from the patient, and the filled vials are manually separated from the blood collection system 10. By lifting the compressor bars 87 and 88, and pulling the discard bar 102, the capillary tube system 15 will separate from between the blood protection plates 72 and 73 and is discarded.

It will be appreciated that while the embodiments of this invention are considered to represent the more usual mode of carrying out this invention, many modifications may be made in the size, shape and assembly of the described blood collection system without departing from the basic spirit of the invention. For example, a second similar blood collection system (not shown) can be connected to the disclosed invention by inserting a needle and associated cannula (not shown) horizontally into the cover 110 of end fitting 111, until the cutting edge of a needle (not shown) pierces the cover 110 of end fitting 111, thereby causing additional blood to flow from the blood vessel 14 through the capillary tube system 15 where the blood discharges directly through the secondary catheter and into the capillary tube system of the second blood collection system.

Hence, six additional blood samples can be collected by attaching evacuated vials into the second blood collection system in the same manner as disclosed infra. Also, it may be desired to attach an automated phlebotomy device (not shown) to the end fitting 111 or openings 33-38 to more fully automate the collection of blood and to further reduce the risk of blood contamination. In a similar fashion, an actuator operated hydraulic cylinder (not shown) can be attached to the end fitting 111 or openings 33-38 for the purpose of modifying the flow of blood.

Front vehicle body structure

Water filtration assembly

Structurally efficient inflatable protective device

Screw

Snap fastening device

Photographic film and film cassette

Shutter time control circuit

Electrical coupling unit for electrosurgery

Selective hydrogenation of olefins

Non-aqueous electrochemical cell

Elongated flexible detonating device

Nitrogen detection

X-ray lens

Three dimensional space viewing device

Gypsum-cement system for construction materials

Actuator and actuator system

Ribbed clothlike nonwoven fabric

Support for a torch

Oscillator circuit

Heterocyclic-methylene-penems

Terminal grounding unit

Variable delivery compressor

Cervical traction device

Pharmaceutically active morpholinol

Method of fabricating electronic circuits

Catalyst patterning for nanowire devices

Wearable display

Paint toning machine

Door clip

Compartmentalized basket truck

Ice body delivery apparatus

Control means for ground hydrants

Environmentally stable monolithic Mach-Zehnder device

Signal amplifier

Developer powder supply cartridge

Digital character display

Optical fiber strain relief device

Dispenser

Window sash

Electromechanical preparation of photoengraving cylinders

Manual floor sweeper

Fuel system for multicylinder engines

Towable "V" rake agricultural machine

DNA sequence encoding N-acetyl-galactosamine-transferase

Powder dividing device for camera

Somatostatin receptors

Flash jet coolant circulation system

Probing with backside emission microscopy

Electronic voting machine

Ion-channel forming peptides

1-(2-Aryl-4,5-disubstituted-1,3-dioxolan-2-ylmethyl)-1H-imidazoles and 1H-1,2,4-triazoles

Seal press

Automatic trimming machine

Impact-resisting composites

Hard surface detergent composition

Fast circuit switching system

Method for preparing microemulsions

Outdoor enclosure with heated desiccant

Modular station platform construction kit

Medical garment

Triarylpropyl-azabicyclooctanes

Flash memory device

Substitute milk fat compositions

Multiple pouch bagging apparatus

Low-noise frequency synthesizer

Production of dihydroxydiphenyl alkanes

Clothes hanger

Master cylinder apparatus

Dual-wavelength x-ray monochromator

Focused image tremble correcting device

Thin floss brush

Electromechanical toy

Fuel system

Modular nuclear fuel assembly design

Golf putt training apparatus

Polysaccharides and preparation thereof

Mower deck bumper

Railcar straddle for material handling

Splash guard

Motor vehicle gearbox

Perfusive chromatography

Lime sludge press unit

Passive lavatory cleanser dispensing system

Preparation of star polymers

Simultaneous telecommunication between radio stations

Drain-extended MOS ESD protection structure

Internal combustion engine

Facial sun block mask

Neck towel and adjustable clasp

Incontinence electrode apparatus

Power converter device

Drum construction

Baby blanket

Golf club stand device

Capacitive pressure transducer

Oxide-superconduction grain boundary tunneling device

4-Aminoaliphatic-2,3,5,6-[dibenzobicyclo[5.1.0]octanes] and salts thereof

Clear impact-resistant syndiotactic polypropylene

Fluid flow reversing apparatus

Aerobic exercise device

Light distribution device

Arrangement for moving an object

Fishing hooking device

Portable foldable splint

Glass compositions

Metering apparatus

Floating inlet tube

Printer control system

Automatic reversal mechanism

Process for decoking catalysts

Catalyzed fluorination of chlorocarbons

Output regulator

Plain bearing

Motor control system

Stabilized throttle control system

Optical device, system and method

Pest bait station