Amine oxide process

by: Summerford, Teresa K.;

A process for accelerating the oxidation of tert-amines by hydrogen peroxide by conducting the reaction in the presence of an ascorbic acid promoter.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to the preparation of amine oxides. More particularly, this invention involves the use of ascorbic acid as a catalyst for accelerating the oxidation of amines by reaction with hydrogen peroxide (H202) to form amine oxides.

2. Background

Oxidation of a tertiary amine such as didecylmethylamine by reaction with hydrogen peroxide to form a tert-amine oxide is known. This reaction is illustrated by the following equation. ##STR1##

An object of the present invention is to increase the oxidation reaction rate.

Another object of this invention is to provide a process that yields clarified tert-amine oxides.

SUMMARY OF THE INVENTION

Accordingly, this invention provides a process for accelerating the oxidation of tert-amines by aqueous hydrogen peroxide by conducting the reaction in the presence of a promoter amount of ascorbic acid. In addition to catalyzing the reaction, ascorbic acid acts as a stabilizer and clarifier of the amine oxide product.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of this invention is a process for oxidizing a tert-amine by reaction with hydrogen peroxide to form a tert-amine oxide, said process comprising contacting said tert-amine with aqueous hydrogen peroxide in the presence of a promoter amount of ascorbic acid whereby the reaction rate is increased. The reactants involved in this process are tert-amines and aqueous hydrogen peroxide. The tert-amines include but are not limited to any amine in which the amino nitrogen atom is bonded to 2 or 3 carbon atoms and no hydrogen atoms. Examples of these are:

trimethylamine

triethylamine

tridecylamine

tridodecylamine

trieicosylamine

docosyldioctylamine

triacontyldibutylamine

N,N-dimethylaniline

N-methyldiphenylamine

triphenylamine

N-methyl-N-dodecylaniline pyridine

2-methylpyridine

N,N-dimethylpiperazine

N-ethylpiperidine

and the like.

The preferred amines are the tri-alkyl amines in which the alkyls are straight or branched chain and contain 1 to about carbon atoms such as:

trimethylamine

triethylamine

trioctylamine

tridodecylamine

2-ethylhexyl di-n-propylamine

isopropyl di-n-dodecylamine

isobutyl di-n-eicosylamine

2-methyldocosyl di-(2-ethylhexyl) amine

triacontyl di-(2-butyldecyl) amine

and the like.

A more preferred embodiment of the tri-alkyl amine is a primary tri-alkyl amine having the structure ##STR2## wherein R.sup.1, R.sup.2 and R.sup.3 are primary alkyls having 1-30 carbon atoms. Representative examples include but are not limited to

trimethylamine

tri-n-pentylamine

tri-n-dodecylamine

n-octadecyl di-(n-butyl)amine

n-eicosyl di-(n-decyl)amine

n-triacontyl n-dodecylmethylamine

and the like.

A still more preferred embodiment of the amine reactants are the tri-primary alkyl amines of formula I wherein R.sup.1 is a primary alkyl having about 8-20 carbon atoms, R.sup.2 is a primary alkyl having either 1-2 carbon atoms or having 8-20 carbon atoms and R.sup.3 is methyl or ethyl. Representative examples of these are

n-octyldimethylamine

n-decyldiethylamine

n-dodecyldiethylamine

n-octadecyldimethylamine

n-eicosyl dimethylamine

n-octyl n-dodecylmethylamine

n-decyl n-eicosylethylamine

and the like.

A highly preferred class of tert-amines are those having the structures: ##STR3## where R.sup.1 and R.sup.2 are primary alkyls containing 8-20 carbon atoms.

Representative examples of these are

n-octyldimethylamine

n-decyldimethylamine

n-dodecyldimethylamine

n-tetradecyldimethylamine

n-hexadecyldimethylamine

n-octadecyldimethylamine

n-eicosyldimethylamine

di-(n-octyl)methylamine

di-(n-decyl)methylamine

di-(n-dodecyl)methylamine

di-(n-tetradecyl)methylamine

di-(n-hexadecyl)methylamine

di-(n-octadecyl)methylamine

di-(n-eicosyl)methylamine

n-octyl n-dodecylmethylamine

n-decyl n-octadecylmethylamine

and the like.

Of course even these highly preferred amines can contain minor amounts of other tert-amines including all those previously mentioned.

The second reactant, aqueous hydrogen peroxide, is used at a concentration between 3 and 99 wt. %. The preferred embodiment uses 30-70 wt. % hydrogen peroxide with the most preferred embodiment being about 50 wt. %.

Stoichiometry requires one mole of hydrogen peroxide to be reacted with one mole of tert-amine. A preferred amount of hydrogen peroxide is about 0.9 to 2.5 moles. A more preferred amount of hydrogen peroxide is 1.0 to 1.5 moles with a still more preferred amount being 1.05 to 1.3 moles. The most preferred quantity of hydrogen peroxide is 1.1 to 1.25 moles.









The mode of adding the reactants is variable. The amine can be added to the hydrogen peroxide or vice-versa. Another mode is to co-mingle reactants as with an in-line mixing arrangement. The preferred embodiment would be to add the hydrogen peroxide at a controlled rate to the amine. By controlled rate it is meant to add the hydrogen peroxide as it reacts rather than all at once so that the amount of H.sub.2 O.sub.2 in the reaction mixture does not reach a hazardous level.

However, the reactants are mixed following a nitrogen sparge utilizing a sparge tube submerged in the amine. A nitrogen pad may be placed on top of a reflux condenser and the amine heated to around 65.C. The ascorbic acid may be added to the amine either after the sparge and before heating or following the removal of the nitrogen pad after heating. The amine may be heated to 80.C., but care must be exercised at 85.degree. C.-90.degree. C. when olefin formation could initiate to some extent.

A useful quantity of ascorbic acid should be a promoter amount between 0.001 and 10 wt. percent. A preferred range is between 0.001 and 3 wt. percent with excellent results obtained between 0.001 and 1 wt. percent.

The reaction is conducted at a temperature high enough to cause the desired reaction to proceed but not so high as to cause excessive decomposition of the reactants or products. A useful temperature range is 30.degree. C. to 200.degree. C. A preferred range is 40.degree. C. to 150.degree. C. with a more preferred range of 45.degree. C. to 100.degree. C. Excellent results are obtained around 65.degree. C.

The reaction should be conducted for a time sufficient to achieve the desired degree of completion of the reaction. A feature of the present process is that it achieves a higher reaction rate than that achieved under the same conditions but without the ascorbic acid promoter. Good results can be obtained in 0 to 48 hours with the more preferable range being between 10 to 36 hours and the most preferable being 20 to 28 hours. The reaction mixture results in amine oxide in water.

A further benefit of the present process is that it prevents the formation of color in the oxide thereby giving a more marketable product. The reaction normally involves the use of hydrogen peroxide as shown by the following equation. ##STR4## wherein R can be the same or different group, preferably a hydrocarbon group or the R groups can form a ring as in pyridine or piperidine.

The following example illustrates the oxidation process according to the present invention and in no manner is it intended to limit the invention described.

EXAMPLE 1

Comparative Example

In a 2 liter reaction flask was placed 500.03 g of di-(n-decyl) methylamine. While stirring under a N.sub.2 atmosphere at about 65.degree. C. a total of 131.68 g of 50 wt % aqueous hydrogen peroxide was added over a 1 hour period. The temperature was then raised to 75.degree. C. and stirring continued for 23 hours. The reaction mixture was then cooled. The results are shown in Table I.

EXAMPLE 2

The Present Invention

In a reaction flask was placed 500 g of di-(n-decyl) methylamine to which was added 5 g of ascorbic acid promoter. A positive nitrogen flow was placed over the mixture and heated to 65.degree. C. Then 131.64 g of 50 wt % aqueous hydrogen peroxide was then added over a 1 hour period while stirring. The temperature was then raised to 75.degree. C. And stirring continued for another 23 hours. After one and six hours at 75.degree. C. the amine conversion rate was increased by about 30% and 15% respectively. The reaction mixture was then cooled. The results are shown in the following Table I.

                  TABLE I
    ______________________________________
                     Example #
                     1     2
    ______________________________________
    Reaction Parameters
    Catalyst           None    Ascorbic Acid
    Temperature (.degree.C.)
    Addition           65      65
    Hold               75      75
    Time (Hours)
    Addition           1       1
    Hold               23      23
    Percent Amine Conversion Over Time (NMR)
     1 hour            32.9    62.6
     3 hours           67.4    91.6
     6 hours           79.2    96.6
    24 hours           91.4    97.1
    Final Product Analyses
    % Amine Oxide (Titration)
                       69.3    77.75
    % Free Amine (GC)  9.6     2.7
    % H.sub.2 O.sub.2 (Titration)
                       .29     .27
    % Olefin (NMR)     .8      1.3
    Color (APHA)       150     10-20
    ______________________________________


AScorbic acid acts as a stabilizer and clarifier to the oxidation reaction. Additionally, its safety is demonstrated by use as a nitrosamine inhibitor and whitening agent in cosmetic formulation.

Start-up circuit for voltage regulators

Imidazodiazepine derivative

Catalyst patterning for nanowire devices

Variable delay memory system

Production of dihydroxydiphenyl alkanes

Fishing hooking device

Variable delivery compressor

Surface modifier composition

Simultaneous production of higher chloromethanes

Three dimensional space viewing device

Expandable tire building former

Somatostatin receptors

Insulating insert for magnetic valves

Fluid flow reversing apparatus

Window sash

Device in clearing saws

Electronic voting machine

Mower deck bumper

Motor vehicle gearbox

Digital phase comparison apparatus

Automatic reversal mechanism

Internal combustion engine

Cover connecting mechanism

Clothes hanger

Nitrogen detection

Preparation of star polymers

Magnetic blanket for horses

Phosphorus-containing copolyamides and fibers thereof

Endoscope signal level control

Motor control system

Pharmaceutically active morpholinol

Naso-gastric tube retainer

Probing with backside emission microscopy

Electromechanical preparation of photoengraving cylinders

Valve timing adjusting device

Ion-channel forming peptides

Sod cutter

Pest bait station

Fuel system for multicylinder engines

Facsimile compression for transmission

Developing unit for electro-photographic apparatus

Powder dividing device for camera

Froth flotation

Compact and robust spectrograph

Shutter time control circuit

Direct conversion receiver per-selection

Signal amplifier

Method of fabricating electronic circuits

Perfusive chromatography

Light distribution device

Multi-channel optical transmission system

Impact-resisting composites

Aerobic exercise device

Door clip

Method of treating melanoma

Gravity particle separator

Isothiazole and isoxazole sulphoxides

Motor vehicle wiper

Fermentation process

Fuel dispensing nozzle

4-Aminoaliphatic-2,3,5,6-[dibenzobicyclo[5.1.0]octanes] and salts thereof

Outdoor enclosure with heated desiccant

Flash memory device

Facial sun block mask

Fast circuit switching system

Display hook system

Intraocular lens

Tricyclic amides

Electromechanical toy

Selective hydrogenation of olefins

Electrical coupling unit for electrosurgery

Security and deployment assembly

Method for purifying acetone

Flexible chain conveyor

Thread wound golf ball

Multipurpose exercising apparatus

Collapsible wheelbarrow

Digital character display

Passive lavatory cleanser dispensing system

Optical device, system and method

Sulfonium salt compounds

Unitary key holder

Automated nut-cracking apparatus and method

Low-noise frequency synthesizer

Cervical traction device

Developer powder supply cartridge

Shot gun shell tracer wad

Manual floor sweeper

Baby blanket

Asymmetric wire rope isolator

Arrangement for moving an object

Thermosensitive recording sheet

DNA sequence encoding N-acetyl-galactosamine-transferase

Drum construction

Flash jet coolant circulation system

Polishing apparatus

Catalyzed fluorination of chlorocarbons

Power-generating control apparatus for vehicle

Elongated flexible detonating device

Process for decoking catalysts

Oscillator circuit

Multiple pouch bagging apparatus

Simultaneous telecommunication between radio stations

Method for preparing microemulsions

Stacker bundler shuttle system

Output regulator

Water filtration assembly