Electro-optic rearview mirror system

by: Fletcher, Sean J.; Schofield, Kenneth; Lawlor, Patrick J.;

An electro-optic interior rearview mirror system is provided for a vehicle, comprising an interior rearview mirror assembly including an interior electro-optic reflective element and an interior mirror housing for said reflective element. The mirror assembly includes a mount for attachment to a portion of the vehicle and a control. The control includes a microprocessor that functions as a controller of a plurality of vehicle functions, the plurality of functions including the reflectance state of the electro-optic reflective element. The control includes a connection to a vehicle bus for receiving control signals via the bus for processing by the microprocessor.


This invention relates to an electro-optic rearview mirror system for a vehicle.

Electro-optic rearview mirrors are very well known in the art and include a mirror housing containing a variable reflectance electro-optic mirror unit. While many different constructions of variable reflectance electro-optic mirror units are known, a typical construction uses two substantially parallel glass plates, one of which (herein referred to as the rear plate) is coated on one surface with a reflective layer (the other plate is referred to as the front plate). The front and rear plates are separated by a space which contains an electro-optic medium allowing variation in the amount of light transmitted through the medium by varying the strength of an electric field applied across the medium. For example, in liquid crystal rearview mirrors the space between the front and rear plates is filled with a semi-viscous liquid crystal material. In electrochemichromic or electrochromic mirrors, the space contains a liquid, thickened liquid, gel or semi-solid material.

The mirror unit is mounted in the mirror housing with the front plate facing the viewer, so that light incident externally on the mirror unit returns to the viewer, after reflection at the rear plate, only after a double crossing of the electro-optic medium. Electrode means, for example a respective transparent electrode layer on each plate, permit varying the electrical field across the electro-optic medium, thereby to correspondingly vary the level of reflected light returned to the viewer and accordingly the reflectivity of the mirror unit as a whole.

In the simplest case the reflectivity of the mirror unit is switchable manually between a maximum appropriate for daylight use to a minimum appropriate for nighttime use where it is required to reduce the glare from headlights of following vehicles. However, it is also known to mount one or more light sensors in the mirror housing which sense the light levels forwardly and/or rearwardly of the vehicle and automatically adjust the reflectivity of the mirror unit according to selected criteria. Typical arrangements of the latter kind are described in U.S. Pat. Nos. 4,793,690, 4,799,768, 4,886,960, 5,193,029, 5,140,455 and 5,151,816.

Hitherto, in all cases the control circuitry for the electro-optic mirror unit has been contained, usually on a printed circuit board (PCB), within the mirror housing itself.

However, this has substantial disadvantages. The mirror housing needs to be fairly bulky to accommodate the control circuitry, which is undesirable from an aesthetic point of view, and this is exacerbated by the current trend to located more and more function in the mirror housing such as a compass display, navigational display system and infra-red (IR) sensor for automatic locking system. Also, the control circuitry tends to generate substantial heat, often as high as 2-3 watts, which means the mirror housing has to be designed for adequate ventilation. Further, the mirror is complex to assemble and has a high replacement cost.


It is an object of the present invention to mitigate these disadvantages.

Accordingly, the invention provides an electro-optic rearview mirror system for a vehicle, comprising a mirror housing containing an electro-optic mirror unit, at least one light sensor for sensing the ambient light level outside the vehicle, and control circuitry responsive to signal(s) from the light sensor(s) to establish a drive voltage for the electro-optic mirror unit, wherein the control circuitry is located outside the mirror housing.

Preferably, the mirror housing is mounted interior of the vehicle.

The light sensor(s) may also be located in the mirror housing, but they may alternatively be located elsewhere in the vehicle where an adequate view of the ambient light level exterior of the vehicle can be obtained.

The control circuitry is preferably located in a header, which is a shallow housing mounted on the ceiling of the vehicle, preferably located behind the rearview mirror housing overhead and centrally between the driver and the front passenger seats.

An advantage of the invention is that the mirror housing does not require interior space to be allocated to the control circuitry and therefore the mirror housing can be reduced in size or, if desired, can accommodate extra functions, such as a compass display, navigational display system or infra-red (IR) sensor as referred to above, without unduly increasing the size of the housing.

Further, the heat generated in the mirror housing is reduced, and also the constructional complexity and replacement cost is reduced. Also, the reduction in components in the mirror, and the use of a black seal on the perimeter of the electro-optic element, permits a simpler assembly method to be used.

Preferably the control circuitry shares a processor which is used for other control functions of the vehicle. This has further advantages.

First, it allows additional functions contained in the mirror housing to be connected to a vehicle bus system 44 without the cost and complexity of adding a separate bus connection node in the mirror. Also, switches and indicators presently located in the mirror housing can be grouped in a central location with other controls. Further, there is the ability to have the electro-optic mirror sensitivity adjusted to customer preferences at dealer service intervals. Additionally, sensors and other features located in the mirror housing can be used for multiple functions, for example, the light sensors used for the electro-optic mirror unit can be used for automatic headlight control.

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:


FIG. 1 is a block diagram of an electro-optic rearview mirror system for a vehicle according to an embodiment of the invention;

FIG. 2 is a circuit diagram of the components inside the mirror housing in the mirror system of FIG. 1; and

FIG. 3 is a cross-sectional view of one example of the physical layout inside a vehicle of the mirror system of FIG. 1.


Referring to the drawings, a vehicle rearview mirror system includes an interior mirror housing 10 mounted in conventional manner via a ball and socket joint 12 to the lower end of a mirror support bracket 14. The upper end of the support bracket 14 is secured to the forward end of a shallow housing (header) 16 mounted on the ceiling of the vehicle behind the mirror housing 10 overhead and centrally between the driver and the front passenger seats. Alternatively the upper end of the bracket 14 can be secured directly to the interior surface of the vehicle windscreen.

The mirror housing 10 contains an electro-optic mirror unit 18 having a ground lead 20 and a voltage supply lead 22. The mirror housing 10 also contains a pair of light sensors 24 and 26 mounted on a PCB 27 and respectively positioned to sense the ambient light levels forwardly and rearwardly of the vehicle through appropriate apertures in the mirror housing in known manner. The light sensors are connected in series between a sensor voltage supply lead 28 and the ground lead 20. A resistor 30 in series with the sensor 24 and a resistor 32 in parallel with the sensor 26 establish appropriate biassing of the sensors 24 and 26 in known manner. A sensor output lead 34 provides a voltage signal which is a function of the ambient light levels forwardly and rearwardly of the vehicle. It will be understood that the particular sensor circuit shown in FIG. 2 is just one a number which could be used, of varying sophistication and complexity, providing one or more sensor outputs as is known in the art.

The support bracket 14 is hollow. The four leads 20, 22, 28 and 34 enter the lower end of the hollow bracket 14, travel up and emerge from the top end of the bracket 14, and are connected to a PCB 36 mounted in the header 16. A connector 38 at the top end of the bracket 14 permits ready removal and replacement of the mirror housing and bracket without needing to disconnect and reconnect the leads at the PCB 36.

Micro-processor-based signal processing and communications circuitry 40, powered by a regulated power supply 42 derived from the vehicle battery, is mounted on the PCB 36. The circuitry 40 is a master controller for many vehicle functions, from which it sends and receives signals via input and output lines 44. To the extent these functions are unrelated to mirror control, they are of no concern to the present invention.

A part 46 of the controller 40 constitutes the control circuitry for the mirror unit 18 (it will be understood that although the mirror control circuitry 46 is shown as a discrete portion of the controller 40, much of it will be shared with other control functions). The mirror control circuitry 46 includes logic circuitry to process the sensor output signal on the lead 34 to determine the appropriate level of mirror reflectivity, and drive circuitry which establishes the resultant drive voltage to be applied via the lead 22 across the electro-optic medium in the mirror unit 18 to set the reflectivity accordingly. Such functions are well understood in the art.

In the embodiment shown in FIGS. 1 to 3, the mirror control circuitry 46 also controls the reflectivity of a pair of exterior electro-optic mirror assemblies 50 and 52 via pairs of leads 54, 56 and 58, 60 respectively. These mirror assemblies 50 and 52 also have electro-optic mirror units, similar to the element 18, and the voltages on the leads 54 to 60 control the reflectivity thereof in response to the sensor output signal on the lead 34. The leads 54 to 60 are connected from the PCB 36 to the mirror assemblies 50, 52 via connectors 62, 64 to permit ready removal and replacement of the mirror assemblies 50, 52 without needing to disconnect and reconnect the leads at the PCB 36.

The PCB 36 also mounts a mirror control switch 66, accessible from below the header 16, to permit the driver to manually disable the control circuitry 46 if desired, for example when the vehicle is reversing at night and the driver does not wish the reflectivity of the mirror to be reduced. The mirror control switch 60 may alternatively be located at the mirror housing 10. Alternatively, the operation of the control circuitry 46 may be automatically overridden by the controller 40 when the latter determines that the vehicle is in reverse gear, as indicated by a sensor input at 44.

In an alternative embodiment of the invention the sensors 24 and 26 are not located in the mirror housing 10, but are fitted to the forward end of the header 16 at a position where an adequate view of the ambient light levels forwardly and rearwardly of the vehicle can be obtained. This alternate location is indicated in dashed lines at 24', 26' in FIG. 3. This further reduces the complexity of the mirror assembly. The other details of this embodiment are the same as previously described.

The invention is not limited to the embodiment of described and exemplified, which can be amended or modified without departing from the scope of the invention.

Wheelchair motorizing apparatus

Thread wound golf ball

Photographic film and film cassette

4-Aminoaliphatic-2,3,5,6-[dibenzobicyclo[5.1.0]octanes] and salts thereof

Master cylinder apparatus

Automated nut-cracking apparatus and method

Terminal grounding unit

Shutter time control circuit

Digital character display

Low-noise frequency synthesizer

Sliding exhaust brake system

Focused image tremble correcting device

Hollow fiber separatory device

Direct conversion receiver per-selection

Multipurpose exercising apparatus

Magnetic blanket for horses

Device in clearing saws

Display hook system

Asymmetric wire rope isolator

Method of preparing ferroelectric ceramics

Extrusion machine

Multiple unit cigarette package

Optical fiber strain relief device

Production of dihydroxydiphenyl alkanes

Motor vehicle wiper

Soybean cultivar 40064423

Actuator and actuator system

Compact and robust spectrograph

Solar thermal propulsion unit

Motor control system

Ribbed clothlike nonwoven fabric

Incontinence electrode apparatus

Process for concentrating fluids

Hard surface detergent composition

DNA sequence encoding N-acetyl-galactosamine-transferase

Simultaneous production of higher chloromethanes

Inter-LAN connection method using ISDN

Cotton gin control

Three dimensional space viewing device

Wearable display

Aerobic exercise device

Golf putt training apparatus

Splash guard

Method for purifying acetone

Polysaccharides and preparation thereof

Substitute milk fat compositions

Cover connecting mechanism

Multi-channel optical transmission system

Multiple pouch bagging apparatus

Glass compositions

Fast circuit switching system

Paint toning machine

Magnetic domain propagation register

Fermentation process

Railcar straddle for material handling

Fuel dispensing nozzle

Elongated flexible detonating device

Towable "V" rake agricultural machine

Thermosensitive recording sheet

Environmentally stable monolithic Mach-Zehnder device

Automatic reversal mechanism

Fishing hooking device

Neck towel and adjustable clasp


Depth-resolved fluorescence instrument

Digital phase comparison apparatus

Liquid container

Dual-wavelength x-ray monochromator

Perfusive chromatography

Snap fastening device

Motor vehicle gearbox

Powder dividing device for camera

Fuel system for multicylinder engines

Simultaneous telecommunication between radio stations

Brake pressure control valve

Somatostatin receptors

X-ray lens

Fuel system

Optical device, system and method

Lime sludge press unit

Internal combustion engine

Selective hydrogenation of olefins

Clear impact-resistant syndiotactic polypropylene

Lithography process

Method of fabricating electronic circuits


Medical garment

Article transferring apparatus

Outdoor enclosure with heated desiccant

Method for preparing microemulsions

Developer powder supply cartridge

Facial sun block mask

Phosphorus-containing copolyamides and fibers thereof

Plastic orientation measurement instrument

Door clip

Oxide-superconduction grain boundary tunneling device

Froth flotation

Oscillator circuit

Variable delay memory system

Printer control system

Laterally supported flexible sign

Surface modifier composition

Compartmentalized basket truck

Power-generating control apparatus for vehicle

Window sash

Antimicrobial cationic peptides

Dual chamber water filter

Preparation of star polymers

Tissue anchoring system and method

Non-aqueous electrochemical cell

Aqueous coating composition

Vertical storage toolbox

Support for a torch

Sulfonium salt compounds

Catalyst patterning for nanowire devices

Ice body delivery apparatus

Pest bait station

Capacitive pressure transducer